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Young’s moduli of thermally sprayed materials are known to be substantially lower than those of well-
sintered materials, due to elastic openings and partial closings of microcracks. Under compressive stresses
some microcrack faces come into contact, which leads to the increase of Young’s moduli and to non-linear
elastic behavior. The bending of beams with elastically non-linear coatings on the compression face caused by
external moments or residual stresses is analyzed theoretically. Examples of stress distributions are given for
a model ceramic coating. Different coating and substrate elastic properties and thicknesses are considered.
The difference between the presented non-linear and previously used linear solutions is shown to be impor-
tant at high compressive stresses, especially in ceramic coatings with high densities of microcracks.

Keywords ceramic coatings, closing of microcracks, compres-
sive stresses, external and residual stresses, non-linear
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1. Introduction

The coatings prepared by thermal spraying have between
2-20 times smaller Young’s moduli than the corresponding well-
sintered materials. Moreover, they have different Young’s
moduli in the directions parallel and perpendicular to the sur-
face. These effects are more pronounced in ceramic than in
metal coatings.[1]

The effects were explained in a series of theoretical papers to
be mainly due to small elastic openings and partial closings of
the intersplat and intrasplat microcracks present in the coat-
ings.[2-5] The microcracks are assumed to be sufficiently opened
(see Ref. 2-5) so that the surfaces do not come into contact under
compressive stresses, and the same values of the elastic con-
stants under tension and compression follow.

A possible effect of compressive stresses on Young’s moduli
of thermally sprayed materials was discussed in Ref. 6. The sur-
faces of a crack may come into contact under compressive stress,
depending on the crack aspect ratio. The increase of Young’s
moduli with increasing compressive stresses, i.e., non-linear
elastic behavior in compression of thermally sprayed materials,
was predicted in Ref. 6. A similar effect is well known in geo-
physics as the effect of hydrostatic pressure on the velocity of
ultrasonic waves and on the elastic constants of rocks containing
cracks.[7-9] The velocity of ultrasonic waves in different direc-
tions in a sphere made of plasma-sprayed alumina under hydro-
static pressure between 0 and 400 MPa has recently been mea-
sured in the Institute of Geophysics in Prague by T. Lokajicek
and co-workers; the corresponding tangent Young’s moduli in-
creased about three times (unpublished research).

The elastic behavior of sprayed materials under compressive
stresses was recently modeled in Ref. 10 within the framework
of the non-linear anisotropic theory of elasticity. Physical non-
linearity with small deformations was assumed. Stress-strain re-
lations were based on a simplified modeling of the closing of
microcracks under compressive stresses in continuum.

Compressive stresses appear, e.g., during bending of beams
with sprayed coatings on the compression face. Moreover, high
residual compressive stresses appear in some coatings. The
bending of beams with coatings, either due to external forces or
residual stresses, was studied analytically within linear elasticity
theory in a number of papers, e.g., in Ref. 11-13. Such theoret-
ical results were used especially in the evaluation of bending
experiments for determining elastic constants or residual
stresses in coatings. A consideration of the effect of compressive
stresses on elastic constants may improve these results, espe-
cially in cases with high compressive stresses.

For this paper, the bending of a beam with elastically non-
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Nomenclature

A, B, A0, B0, C, n constants
e elastic strain
E Young’s modulus, Pa
h thickness, m
k = hS/h, K = ES/E1, dimensionless parameters
m = M/(h2E1)
M moment (per unit thickness), N
x, y, z Cartesian coordinates, m
� initial strain
� stress, Pa

Subscripts

L limit
S substrate
SEC secant
T total
TAN tangent
1 for small stresses
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linear coating, with stress-strain relations based on Ref. 10, was
studied. The problem is formulated analytically, but the result-
ing system of equilibrium equations is solved numerically. To
obtain the most general results, dimensionless quantities are
used throughout.

2. Bending Due to External Moment and
Residual Stresses

2.1 Governing Equations

Pure elastic bending due to external moment M (per unit
thickness in the y direction) (Fig.1) and to homogeneous initial
deformation � in the coating will be studied as a plane stress
problem. The initial deformation may be connected with the sec-
ondary (differential thermal contraction) residual stresses
caused by cooling of the coating with substrate from temperature
T to a reference temperature T0, T > T0. Homogeneous initial
deformations in the x direction in the coating and the substrate
are � = � (T0 − T ), �S = �S (T0 − T), where � and �S are the
constant thermal expansion coefficients of the coating and sub-
strate, respectively. For simplicity, we assume in the further text
that in the coating � = (�S − �)(T − T0) while in the substrate �S

= 0, without loss of generality.
In view of the compatibility equations, the total strain in the x

direction, eT
xx = eT, must be a linear function of coordinate z and

will be written as

eT = A (z/h) + B, −hS � z � h, (Eq 1)

where h and hS are the thicknesses of the coating and substrate,
respectively. A and B are dimensionless constants, which can be
determined from the equilibrium conditions.

Elastic deformations in the x direction in the coating e and in
the substrate eS are given by

e = eT − � = A (z/h) + B − �, 0 < z � h, (Eq 2)

eS = eT = A (z/h) + B, hS � z < 0

Next, the elastic stress-strain relations must be specified. A ho-
mogeneous isotropic elastically linear substrate with Young’s
modulus ES is considered by assuming

�S = ES eS, −hS � z < 0 (Eq 3)

A non-linear elastic stress-strain relation for the coating under
compressive stresses, � < 0, and elastic contractions, e < 0, is
taken from Ref. 10 in the form

e = (�/E1) + C (�/E1)2, 0 < z � h, (Eq 4)

where E1 is Young’s modulus of the coating for � → 0 (for small
stresses) and C is a dimensionless positive material constant
characterizing the non-linearity of the coating.

The corresponding stress-strain relation �(e) can be obtained
from Eq 4 as a solution of the quadratic algebraic equation

(�/E1) = [1/(2C)] [−1+ (1+ 4Ce)1/2] (Eq 5)

The second solution of the quadratic equation, with the minus
sign in front of the bracket (1 + 4Ce)1/2, has no physical meaning.

The secant modulus of the coating, ESEC = �/e, depends on
stress � as

ESEC = E1/[1+ C (�/E1)] (Eq 6)

To discuss the range of validity of Eq 4 and 5, the dependence of
tangent Young’s modulus ETAN = d�/de on stress will be used,

ETAN = E1/[1+ 2C (�/E1)] (Eq 7)

The value of ETAN increases with increasing compressive stress,
� < 0, and for finite positive values of ETAN the relation �/E1 >
−1/(2C) must be satisfied. A limit value �L of the compressive
stresses will be chosen as �L/E1 = −1/(nC) with n > 2. The limit
stress corresponds to the case where nearly all the microcracks
have been closed and the tangent modulus from Eq 7 reaches its
maximum value ELTAN = [n/(n − 2)] E1.

Preliminary estimates of the limit tangent modulus based on
the measurement of ultrasound velocity in dependence on hy-
drostatic pressure suggest the relation ELTAN = 3E1 for plasma
sprayed alumina (the increase from E1 ≅ 60 GPa to ELTAN ≅ 180
GPa), i.e., n = 3. A similar effect of uniaxial compression can be
expected. The limit value of compressive stresses is then (�L/E1)
= −1/(3C) and the limit value of elastic deformation follows
from Eq 4 as eL = −2/(9C).

The value C = 30 seems reasonable for ceramic materials.[10]

The limit value of stress is then (�L/E1) = −1/90 = −0.0111 (e.g.,
for E1 = 60 GPa, �L = −670 MPa) and the limit value of elastic
strain eL = −2/270 = −7.41 × 10−3.

The stress-strain relation given by Eq 4 or 5, proposed for a
typical plasma sprayed ceramics like alumina with C = 30 and n
= 3, is shown in Fig. 2. The corresponding dependences of tan-
gent and secant Young’s moduli on stress are given in Fig. 3. If
necessary, the stress-strain relation can be extrapolated to higher
compressive stresses with constant tangent Young’s modulus,
(� − �L) = ELTAN (e − eL), as shown by the dashed line on the
left-hand side in Fig. 2 and 3. The stress-strain relation can also
be extrapolated as an approximation to small tensile stresses 0 <
� < �F [where �F is the fracture stress, for plasma sprayed ce-

Fig. 1 Substrate with coating on compression side
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ramic materials rather low, (�F/E1) ≅ 10−3] as shown by the
dashed line on the right-hand side in Fig. 2 and 3.

The unknown constants A and B can be calculated from the
conditions of equilibrium of forces and moments over the cross
section x = constant,

�−hS

0
�S(z)dz+�

0

h
��z�dz = 0 (Eq 8)

�−hS

0
�S�z�zdz + �

0

h
��z�zdz = M (Eq 9)

Eq 8 and 9 (with Eq 3, 5, and 2) form a set of two non-linear
equations for the two unknown constants A and B.

Solving for A and B, the stresses �S(z) and �(z) follow from
Eq 3 and 5 with Eq 2. The radius of curvature R of the beam can
be computed as

(R/h) = (1/A) (Eq 10)

2.2 Analytical Solution for Linear Coating (C = 0)

An analytical solution for C = 0 was established by several
authors, e.g., Ref. 11-13. The integrals in Eq 8 and 9 are elemen-
tary, and the equations transform into a system of two linear
algebraic equations for A = A0 and B = B0. Using dimensionless
quantities

K = ES/E1, k = hS/h, m = M/(h2E1) (Eq 11)

the results can be written separately for two particular cases.
1) For the effect of external moment M � 0 (and � = 0):

A0 = 12[(1+ Kk)/d]m (Eq 12)
B0 = 6[(Kk2 − 1)/d]m

where the denominator d > 0,

d = 1 + K2k4 + 2Kk(2 + 3k + 2k2) (Eq 13)

2) For the effect of residual stresses � � 0 (and M = 0):

A0 = 6[Kk(1 + k)/d] �, (Eq 14)
B0 = {[1 + Kk2(3 + 4k)]/d} �

In case C = 0, all the stresses in the substrate and in the coating
are linear functions of z,

�S = ESeS, � = E1e (Eq 15)

where eS and e are given by Eq 2 with A0, B0 written instead
of A, B.

2.3 Non-linear Coating (C � 0)

With C�0, the integrals in Eq 8 and 9 can again be evaluated
analytically and the equations transform into a system of two
non-linear equations for the constants A and B,

K [−(k2/2)A + kB] − 1/(2C) + [1/(12C2A)]
{[1 + 4C(A + B − �)]3/2 − [1 + 4C(B − �)]3/2 } = 0 (Eq 16)

K[(k3/3)A − (k2/2)B] − 1/(4C) + [1/(16C3A2)]
{(1/5)[1+4C(A+B − �)]5/2 + (2/15)[1 + 4C(B − �)]5/2

− (1/3)[1 + 4C(B − �)] [1 + 4C(A + B − �)]3/2 } = m (Eq 17)

where the dimensionless quantities K > 0, k > 0 and m from Eq 11
are used. Note that external moment M leading to compressive
stresses in the coating is negative (Fig. 1), i.e., m < 0. Initial
deformation leading to compressive stresses in the coating is
positive, � > 0. The corresponding radii of curvature RM < 0 and
R� > 0 are shown in Fig. 1.

Fig. 2 Stress-strain relation (Eq 5) for C = 30 and n = 3; � shows the
difference between the non-linear and linear laws

Fig. 3 Dependence of ETAN and ESEC on stress � for C = 30 and n = 3
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The two non-linear equations were solved numerically1 for
C = 20, 30, 40 and different values of K, k, m (with � = 0) and �
(with m = 0). As an example, the results for C = 30, K = ES/E1 =
2, for two values of k = hS/h, k = 4 and k = 2, and for increasing
values of m and � will be presented and compared with the linear
solution.

The computed values of constants A, B, together with the
values of A0, B0 from Eq 12-14, are given in Table 1. The de-
pendence of normalized stresses �/E1 and �S/E1 on normalized
coordinate z/h are shown in Fig. 4 for m � 0 and in Fig. 5 for
� � 0. The stresses corresponding to the non-linear solution
(given by Eq 3 and 5 with Eq 2) are plotted by full lines and the
stresses for the linear solution (given by Eq 15 with Eq 2 for A0,
B0) are plotted by dashed lines.

3. Discussion

The non-linear elastic stress-strain relation given by Eq 4 or 5
is based on a simple model of the closing of microcracks by
compressive stresses in thermally sprayed materials from Ref
10. This non-linearity is best manifested by the steep increase of
tangent Young’s modulus ETAN with increasing compressive
stresses (Eq 7 and Fig. 3), confirmed directly by measurements
of ultrasound velocity where very small stress increments are
superimposed on the compressive pre-stress.

However, the increase of compressive stresses with deforma-
tion is less steep and the non-linear solution gives only a modest
correction to the linear solution, as shown for bending of sub-
strates with sprayed coatings in Fig. 4 and 5.

Such correction can well be illustrated by the analysis of re-
sidual stresses in a thin coating on a thick substrate, for k = hS/
h >> 1, for initial deformation � > 0 and for m = 0. This case can
be treated as a coating on a half-space (a thick substrate with
neglected bending). The homogeneous elastic deformation e of
the coating is then given, e = −� (see e.g., Ref. 13). The depen-
dence of the homogeneous compressive stress � on e from Eq 5
is shown in Fig. 2 for the model material with C = 30. The dif-
ference � between the non-linear and linear stresses changes
with increasing deformation, from a few percent to dozens of
percent. The stress in the non-linear solution is proportional to
the current value of the secant modulus, � = ESEC(�)e, and the

stress dependence ESEC(�) is less steep than that of ETAN(�)
(Fig. 3). Even for the limit deformation eL = −0.0074, i.e., for the
limit stress �L/E1 = −0.0111, where the current values of

1Bisection algorithm was used. A Fortran program is printed out in the
Appendix.

Table 1 Values of Constants A, B (Solution of Non-linear Eq 16 and 17) and A0, B0 (Linear Eq 12 and 14), Due to
Dimensionless Moments m = M/(h2E1) < 0, � = 0, or Due to Initial Strains � > 0, m = 0 for C = 30, K = ES/E1 = 2 and for Two
Values of k

k = hS/h = 4 k = hS/h = 2

102 m −0.60530 −1.86100 −3.20300 −4.6970 −0.19210 −0.5962 −1.0370 −1.5410
102 A0 −0.03712 −0.11420 −0.19640 −0.2881 −0.05971 −0.1853 −0.3224 −0.4790
102 B0 −0.06394 −0.19660 −0.33830 −0.4961 −0.04179 −0.1297 −0.2257 −0.3353
102 A −0.03682 −0.11110 −0.18650 −0.2640 −0.05902 −0.1784 −0.3003 −0.4263
102 B −0.06318 −0.18890 −0.31350 −0.4360 −0.04098 −0.1216 −0.1997 −0.2737
102 � 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
102 A0 0.01377 0.04089 0.06814 0.0954 0.03731 0.1119 0.1865 0.2611
102 B0 0.03458 0.10370 0.17290 0.2421 0.04611 0.1383 0.2306 0.3228
102 A 0.01377 0.04222 0.07202 0.1034 0.03744 0.1131 0.1900 0.2681
102 B 0.03494 0.10710 0.18280 0.2625 0.04629 0.1400 0.2352 0.3321

Fig. 4 Dependence of normalized stresses �/E1 and �s/E1 on normal-
ized coordinate z/h for four values of dimensionless external moment
m = M/(h2E1) < 0 (without initial strain, � = 0); full lines, non-linear
solution; dashed lines, linear solution. Dimensionless parameters K =
Es/E1 = 2 and k = hs/h = 4 or 2 are chosen.
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Young’s moduli are ETAN/E1 = 3 but ESEC/E1 = 1.5 only, the
non-linear stress is only 50% larger than the stress following
from linear Hooke’s law for the same deformation, �/E1 = eL.

The position z0 of the neutral axis follows from Eq 1 with the
condition eT(z0) = 0. It is interesting to note that within linear
theory z0/h = −B0/A0 does not depend, according to Eq 11-14, on
external moment m or on initial deformation � and depends only
on ratios K and k. On the other hand, the position of the neutral
axis in the non-linear case, z0/h = −B/A, depends slightly on m or �.

The deformation e in the stress-strain relation given by Eq 4
or 5 has been assumed to be elastic. However, even at the uni-
directional compressive stress, small inelastic contribution
caused by sliding along the microcrack faces by the shear stress
components can be expected, as mentioned in Ref. 8 and 14.

The mechanical properties of plasma sprayed materials have
usually been considered in literature as linear elastic (e.g., in
Ref. 1). However, in general, the specific microstructure of these
materials, especially the high density of microcracks and imper-
fect bonds between the splats, lead to non-linear elastic and in-
elastic effects, even at small deformations. They can be observed

in coatings also under tensile deformations 0 < e < 0.1%,[15]

before macrocracks are formed by interconnection of the micro-
cracks. In this case, the non-linearity is caused by increasing
microcrack densities, only partly by elastic processes (interfaces
in close contact without bonding act as microcracks at tensile
deformation) and mainly by inelastic effects (some weak bonds
can be broken even by small tensile stresses so that some micro-
cracks can grow, and new microcracks can be formed). Such
tensile behavior could also be formally described by the stress-
strain relation introduced in Eq 4.

On the other hand, the elastic deformation due to closing of
the microcracks seems to be the main contribution to the non-
linearity of sprayed materials under compressive stresses. It fol-
lows from the presented study of bending that the non-linear
elastic behavior should be taken into account at high compres-
sive stresses, especially in plasma-sprayed ceramic coatings and
free-standing parts with high densities of microcracks.

4. Conclusions

• Young’s moduli E1 of thermally sprayed materials, espe-
cially of ceramics, subjected to small stresses are much
smaller than Young’s modulus E0 of a well-sintered mate-
rial. This effect is well known to be mainly due to the pres-
ence of a high density of microcracks.[1]

• The increase of Young’s modulus E1 to the values closer to
E0 under higher compressive stresses is due to the elastic
closing of microcracks with small crack aspect ratios. This
effect was predicted on the basis of theoretical consider-
ations[6] and modeled within non-linear elasticity theory.[10]

• In this paper, the stress distribution in a beam composed of
elastically non-linear coating and elastically linear substrate
due to bending by external moments or residual stresses was
calculated. The typical properties of a model ceramic coat-
ing were chosen. Corrections to previously published linear
solutions become significant for high compressive stresses
in the coating.

• The results can be applied to the improvement of evaluation
of bending experiments, often used for the determination of
elastic constants or residual stresses in the coatings.

• The microcrack densities and distributions of crack aspect
ratios sensitively depend not only on the coating material
but also on the parameters of the spraying technology. More
quantitative microscopic experiments on microcracks as
well as macroscopic measurements of the dependence of
Young’s moduli on compressive stress in thermally sprayed
materials would be useful.
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APPENDIX

A Fortran program for the solution of Eq 16 and 7, using the bisection method.
PROGRAM LAYER
IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H,O-Z)
************************************************************************
* *
* Input file: layer.i (example) *
* *
* Es/Eo CEo hs/h ! Problem data (compulsory comment line) *
* 2 30 4 ! real real real *
* eps eh flag ! Loading (compulsory comment line) *
* 5.e-3 0 1 ! real real integer *
* *
* Es Young’s modulus of the beam *
* Eo Young’s modulus of the coating *
* CEo e = (sigma + C*sigma^2)/Eo, CEo = C*Eo *
* hs height of the beam *
* h thickness of the coating *
* eps initial (thermal) strain in the coating *
* eh total strain on the top surface (z=h) *
* flag = 0 eps, eh prescribed, moment computed *
* = 1 eps, m=0 prescribed, eh ignored, deflection computed *
* *
* Output file: layer.o *
* *
************************************************************************
COMMON E,CE,H,EPS,EH
C
MR = 50
OPEN(MR,FILE = ‘layer.i’,STATUS=‘OLD’)
REWIND MR
MW = 60
OPEN(MW,FILE = ‘layer.o’)
CLOSE(MW,STATUS=‘DELETE’)
OPEN(MW,FILE = ‘layer.o’)
REWIND MW
C
C Read E=Es/Eo, CE=CEo, H=hs/h
READ(MR,‘()’)
READ(MR,*) E, CE, H
C Read EPS=eps, EH=eh, KEY=flag
READ(MR,‘()’)
READ(MR,*) EPS, EH, KEY
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C
C Write input
WRITE(MW,‘(12x,“*** Input data ***”)’)
WRITE(MW,‘(/7HEs/Eo =,F4.1,9H, CEo =,F5.1,10H, hs/h =,F4.1)’)
* E,CE,H
WRITE(MW,‘(/5Heps =,E12.4,8H, eh =,E12.4)’) EPS, EH
IF(KEY.EQ0) WRITE(MW,‘(/“Solve for eps, eh given”)’)
IF(KEY.EQ1) WRITE(MW,‘(/“Solve for zero moment (eh ignored)”)’)
C
IF(KEY.EQ0) CALL SOLVEH(A,B)
IF(KEY.EQ1) CALL SOLVEM(A,B)
RN = FORCE(B)
RM = COUPLE(B)
C
D = 1 + E*E*H**4 + 2*E*H*(2+3*H+2*H*H)
IF(KEY.EQ0) THEN
A0 = 12*(1+E*H)*RM/D
B0 = 6*(E*H*H-1)*RM/D
ELSEIF(KEY.EQ1) THEN
A0 = 6*E*H*(1+H)*EPS/D
B0 = (1+E*H*H*(3+4*H))*EPS/D
ENDIF
C
C Write results
WRITE(MW,‘(/12x,“*** Results ***”)’)
WRITE(MW,‘(/“total strain = A*(z/h) + B”)’)
WRITE(MW,‘(“A, B constants”)’)
WRITE(MW,‘(“z vertical coordinate (z=0 at the interface)”)’)
WRITE(MW,‘(“h thickness of the coating”)’)
WRITE(MW,‘(“N total axial force = 0”)’)
WRITE(MW,‘(“m bending moment = M/(width*Eo*h^2)”)’)
WRITE(MW,‘(/4HA =,E12.4)’) A
WRITE(MW,‘(4HB =,E12.4)’) B
WRITE(MW,‘(4HA0 =,E12.4)’) A0
WRITE(MW,‘(4HB0 =,E12.4)’) B0
WRITE(MW,‘(4HN =,E12.4)’) RN
WRITE(MW,‘(4Hm =,E12.4)’) RM
WRITE(MW,‘(/12X,“*** End of layer ***”)’)
STOP ‘O.K.’
END
SUBROUTINE SOLVEH(A,B)
************************************************************************
* *
* Solve for constants A, B if EH is given. *
* *
* Input: *
* Problem data, EH ... common entries *
* *
* Output: *
* A, B *
* *
************************************************************************
IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H,O-Z)
COMMON E,CE,H,EPS,EH
EXTERNAL FORCE
CRIT = 1/(4*CE)*0.9
BTOL = 1.E-14*CRIT
B1 = EPS - CRIT
B2 = EPS + CRIT
ROOT = FORCE(B1)*FORCE(B2)
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IF(EH-EPS.GT.CRIT .OR. ROOT.GE.0) STOP ‘Out of range’
CALL DIVINT(B1,B2,BTOL,FORCE, B)
A = EH - B
END
SUBROUTINE SOLVEM(A,B)
************************************************************************
* *
* Solve for constants A, B if m = 0. *
* *
* Input: *
* Problem data ... common entries *
* *
* Output: *
* A, B *
* *
************************************************************************
IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H,O-Z)
COMMON E,CE,H,EPS,EH
EXTERNAL EQUI
EHTOL = 1.E-14*ABS(EPS)
IF(EPS.GT.0) THEN
EH1 = 0
EH2 = EPS
ELSEIF(EPS.LT.0) THEN
EH1 = EPS
EH2 = 0
ENDIF
CALL DIVINT(EH1,EH2,EHTOL,EQUI, EHH)
EH = EHH
CALL SOLVEH(A,B)
A = EH - B
END
FUNCTION EQUI(STRAIN)
************************************************************************
* *
* Compute moment if STRAIN is given. *
* *
************************************************************************
IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H,O-Z)
COMMON E,CE,H,EPS,EH
EH = STRAIN
CALL SOLVEH(A,B)
EQUI = COUPLE(B)
END
FUNCTION FORCE(B)
************************************************************************
* *
* Compute axial force. *
* *
************************************************************************
IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H,O-Z)
COMMON E,CE,H,EPS,EH
A = EH - B
C1 = 1 + 4*CE*(A+B-EPS)
C2 = 1 + 4*CE*(B-EPS)
FORCE = (C1**1.5 - C2**1.5)/(12*A*CE**2)
FORCE = E*(B*H-A*H**2/2) - 1/(2*CE) + FORCE
END
FUNCTION COUPLE (B)
************************************************************************

Journal of Thermal Spray Technology Volume 11(4) December 2002—515

P
eer

R
eview

ed



Compute bending moment.
************************************************************************
IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H, O-Z)
COMMON E, CE, H, EPS, EH
A = EH - B
C1 = 1 + 4*CE*(A+B-EPS)
C2 = 1 + 4*CE*(B-EPS)
COUPLE = (C1**2.5/5 + 2*C2**2.5/15 - C2*C1**1.5/3)/(16*A**2*CE**3)
COUPLE = E* (A*H**3/3-B*H**2/2)-1/(4*CE) + COUPLE
END
SUBROUTINE DIVINT (X1, X2, TOL, F, X0)
************************************************************************
Interval division.
Input:
X1, X2 interval
TOL tolerance prescribed
F (X) external function
Output:
X0 root
************************************************************************
IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H, O-Z)
F1 = F (X1)
1 X0 = (X1+X2)/2
IF (X2-X1.LT.TOL) RETURN
F0 = F (X0)
IF (F1*F0.LT.0) THEN
X2 = X0
ELSE
X1 = X0
F1 = F0
ENDIF
GOTO 1
END
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